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Chapter 13

The Einstein-de Sitter
Universe

The
simplest
model

Way back in 1932, Einstein and de Sitter presented the ‘standard’ model of
the cosmos to the world.* It is the simplest possible model and has been

*This must not be confused with the ‘De Sitter model’, which was an earlier effort of
De Sitter alone [Peebles, chapter 5].

the favorite amongst cosmologists until the 1980s. In a way it was the ‘de
facto industry standard’ for over 50 years.

In short, this model started in an extremely dense state, much like the
elementary ‘Escher model’ discussed in the introduction. The expansion
rate must have been extreme in the beginning, but fine tuned so that the
gravitational pull of the matter in the universe was precisely balanced by the
kinetic energy of expansion. In other words, potential energy and kinetic
energy of expansion had to balance out, with a nett energy of zero.

This fine balance had to be maintained until the present and, according to
this model, will be maintained forever. This chapter will examine the major
properties of the 'Einstein-de Sitter model’. More modern variations of this
model will be examined in later chapters.

13.1 Einstein-de Sitter spacetime

What must be stressed is that particles, atoms, molecules and later con-
gregations of matter are not expanding into pre-existing space. It is space
itself that is expanding.
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When we draw a diagram of Einstein-de Sitter spacetime, as shown in fig-
ure 13.1, it appears as if the expansion were driving matter outwards at
speeds exceeding that of light. But light itself was being driven outwards
with the expansion, so that relative to the (stretching) fabric of spacetime,
light was still moving at its normal speed and matter were always moving
at less than the speed of light.

The curve in figure 13.1 shows the “edge” of the observable universe as it
would have looked in one space and one time dimension over the history of
the universe. Actually, ‘looked’ is not a good word choice, since no observer
could have ‘seen’ the ‘edge’ of the universe like that.

Since we are limited to observe the universe by means of light and other
electromagnetic radiation, which do not have infinite propagations speed, we
see a completely different picture. We can however use observational data
to draw such a graph, but it will always be somewhat model dependant—in
this case the Einstein-de Sitter model.

The scales of time and space shown is further dependant upon the value of
the Hubble constant, Hy, for which 50 km/s/Mpc was used here, simply
because it was the favorite value for most of the time of Einstein and de

Sitter.
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Figure 13.1: A spacetime diagram for the observable universe according to the
Einstein-de Sitter model, where the expansion curve is parabolic. The shown positions
of the remote galaxies are not where they are observed, but their actual (presently unob-

servable) positions.

We will now briefly look at what 'observable’ space in an expanding universe
means.
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13.2 Observable space

Our main observational method of the universe is through electromagnetic
radiation (photons) of various wavelengths. Unlike material objects, which
can be stationary in space, photons cannot be stationary. They always have
to move at the speed of light in some or other direction in space.

If we trace the path of a photon that was tranmitted in our direction from
near the edge of the (expanding) observable universe at a very early time,
it will follow one side of the teardrop-shaped curve shown in figure 13.2.
The reason for the shape is that when the expansion rate was very high,
the photon would effectively have been dragged away from us (the central
world line).

Since the photon always moves at precisely the speed of light through local
space, it will move away from the ‘edge’ and eventually find itself in a region
where the rate of expansion is slow enough for it to start approaching the
central world line. Eventually it will reach us and can be detected.

Photons from the very edge of the observable universe will take the full
age of the universe to reach us. Areas further than the current edge will
reach us some time in the future. From areas inside the current edge we
will observe a continuous stream of photons, which will be elaborated on in
the next paragraph.
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Figure 13.2: The teardrop-shaped curve in the centre represents the paths of two
photons, transmitted in opposite directions from the edge of the observable universe when
the universe was very, very young. They are presently being observed in the Milky way for
the first time. For every instant in time, there is a slightly different ‘teardrop’, representing

the path of another pair of photons.

Essentially, their are an infinite number of ‘teardrops’, one for every instant
of observation. However, at one instant, we can in principle observe an
infinite number of photons, coming from different distances, all following
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the same ‘teardrop’ path.

In just one space dimension, observing multiple photons may be difficult, if
not impossible. In more than one dimension, the problem largely dissappear.
We can then resolve different photons arriving simultaneously from slightly
different directions.

In figure 13.3, the parabolic expansion curves for the spacetime of two
galaxies at intermediate distances are drawn, one at one third and one at
two thirds of the distance to the end of observable space.

We observe them as they were when the universe was 0.46 Gy and 3.8 Gy
old respectively, as shown in the figure. Light took ~ 13 — 0.46 ~ 12.5 Gy
and ~ 13 — 3.8 = 9 Gy respectively to reach us from those galaxies. This
is also their respective distances in light travel time.

Observer

0

—~

a)

Expansion factor

Figure 13.3: The spacetime expansion curves of two pairs of galaxies, presently at
10 and 20 Gly from us respectively. Where the curves intersect the ‘teardrop’ is where
the galaxies were when we observe them today—in principle at least—they may be too

far to be observed in practice.

13.3 Standard expansion model concepts

In order to comprehend cosmological models, we must first firmly establish
some basic concepts around the Hubble constant and it's units. The Hubble
constant Hy (pronounced ‘H naught’ or ‘H zero') is defined as the apparent
speed of recession of a distance object per unit distance.

In the Sl convention, the units of Hy should really be (metres/second)/meter,
giving second~!. This would give an extremely small value for Hy, so Ed-
win Hubble decided to use the units km/s/Mpc, giving a ‘friendly’ range of
values, between 50 and 100 km/s/Mpc.*

Cosmologists further define a dimensionless Hubble parameter h. It has
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‘ *One Mega-parsec (Mpc) is about 3.3 million lightyears.

the value h = Hy/(100 km/s/Mpc), with an original ‘best fit value’ around
0.5, meaning Hy ~ 50 km/s/Mpc.

The parameter h is often used in conjunction with other dimensionless cos-
mological parameters, to make them valid for any value of the Hubble con-
stant Hy, especially when such parameters are extracted from observational
data. More about that later.

It must be noted that the Hubble constant is not necessarily constant,
because it must have been much higher in the past. So Hj is referred to
as the present Hubble constant or also the local Hubble constant. At other
times, the value is denoted by just H or by H(t), meaning the ‘time varying
Hubble constant’.

In the Einstein-de Sitter expansion model, the mutual gravity of all the
matter in the universe must be balanced by the expansion rate of the entire
universe. this must be done in such a way that the expansion rate is just
high enough to prevent an eventual re-collapse of the universe.

This requirement demands a very specific expansion law. In imitation of the
escape velocity: dr/dt = \/2GM /r, the rate of change of the expansion

factor equals
da Hg
/=0 13.1
==\ (13.1)

if appropriate units are chosen. Hj is the Hubble constant and a the di-
mensionless (time varying) expansion parameter* at time ¢. Here Hg is

*Recall that a is defined to be unity at the present time and 0.5 when the observable

universe was half it's present size.

equivalent to 2G M, a constant energy, because Hj represents the ‘velocity’
of expansion and energy is proportional to velocity squared.

This is the expansion law for the Finstein-de Sitter universe. It can also
be written as

and integrated against a, to find

wino

p— L / 3d A, tant
= — a a = —_— constant.
H, H,

It is assumed that t = 0 for a = 0, making the constant of integration zero.
In standard textbooks, e.g., [Peebles, Peacock], this relationship is usually
written as

Hot = 2a2, (13.2)

which was used to plot the expansion curves of the preceeding figures of
this chapter.
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Since a is a dimensionless parameter, the above implies that Hy has the

units (time)~!. If time is measured in Gy, then Hy has the units Gy~

The conversion from the standard units for Hy (km/s/Mpc) to Gy~! is a
factor 9—%8 in appropriate units. Cosmologists seem to happily live with this
‘dual use’ of the symbol Hy, but engineers normally don't.

The author prefers to show the difference more clearly by defining a nor-
malized Hubble constant
[ — E -1
0= 978 y -
as will be used in equations in the rest of this book. Because at present,
a = ag = 1, equation 13.2 immediately gives us the present age of the
universe, as predicted by the Einstein-de Sitter model:

1
to = 2—= Gy. 13.3
0 3H0 y ( )
In the early days, when Hy was taken as around 50 km/s/Mpc (or Hy =
0.051 Gy~ 1), this gave an age for the ‘standard’ universe of about 13 Gy. We
will see in later chapters that a new ‘standard’ model has been developed,

giving about the same age, but with a Hubble constant around 0.07 Gy~ !.

In the Einstein-de Sitter model, this Hubble value gives an age below 10 Gy,
which is incompatible with other observational data. From equation 13.2,
we also have the following useful relationship

& = (if, (13.4)

telling us that at as we look back in time, say to when the universe was an
eighth of it’s present age, the expansion factor was a quarter of what it is

today, because
B <1)% 1
a=\3g) =71

An expansion factor a = 1/4 means that the present visible universe was
then one quarter of it's present size.

13.4 Redshift

Engineers are mostly familiar with the Doppler shift caused by objects mov-
ing through the air or through space (like radio waves). Redshift is essen-
tially the same thing, but in cosmology it may have two origins.

The first is like Doppler shift, where a source is moving through space
relative to us. It becomes a blueshift if the source is moving towards us.
Then there is cosmological redshift caused by the expansion of space.

Since photons move through space as electromagnetic waves, it is reason-
able to accept that their wavelengths stretch with space. If a photon was
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emitted into space when the expansion factor was a = 0.5, then today, with
expansion factor a = 1, all distances have stretched by a factor 0—% =2 and
so has the wavelength of the photon.

If the photon had a wavelength A when emitted, it will now have a wave-
length 2 = 2X. The increase in wavelength will be AX =2 — X = X in this
case, with a = 0.5. Expressed as a fraction of the original wavelength:

_ AN

TN

1

- -1 13.5
- (13.5)
which will be unity in this case. The parameter z is called the cosmological
redshift We can also express the expansion factor a as a function of redshift

z:
1

z24+1°
Equations 13.5 and 13.6 are very important relations in cosmology. Since
the present value of a is unity, light emitted very recently will have a redshift
approaching zero.

(13.6)

If the expansion factor was very small when the photon was emitted, the
photon’s redshift would be very large, as is clear from figure 13.4. Here the
redshifts for the galaxies that we worked with before (fig. 13.3) are shown
against the expansion factor.

It is interesting to note that turn-of-the-millennium technology only allowed
observation of galaxies up to just over z = 6. The only observations at
significantly larger redshifts were the cosmic microwave background (CMB)
radiation, weighing in at just over z = 1000. More about the CMB later in
this chapter.
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Figure 13.4: The expansion curves against expansion factor, allowing the redshift of

galaxies to be calculated where the teardrop and the curves intersect.

Copyright 2006: Einstein's-theory-of relativity-4engineers.com



RELATIVITY 4 ENGINEERS

CHAPTER 13. THE EINSTEIN-DE SITTER UNIVERSE 179

13.5 The other ‘Hubble quantities

Hubble time is the inverse of the Hubble constant, in appropriate units
of course. Cosmologists sometimes confuse people outside their trade by
stating the Hubble time as

1 9.78

7 GY7

t = —_— =
=g, "h

implying, but not saying, that H is expressed in Gy~! and h = 100
km/s/Mpc. One should rather avoid this potential confusion and use the
normalized Hubble constant, simply stating
1 978

tgy = = = — Gy.

H , H, y
It is essentially the time it would have taken the present observable universe
to expand from near zero size to it's present size, given that the expansion
rate was always the same as today.

If we take the ‘old’ value of Hy ~ 0.05, it means that tz7 ~ 20 Gy, which
is a ‘characteristic’ timescale, but not the age of the universe. We have
seen above that in the Einstein-de Sitter model, the age of the universe is
two-thirds of the Hubble time.

There are more modern models that utilize the same Hubble time, but
yields a different fraction than two-thirds, caused by a different expansion
law. These will be dealt with later in this chapter.

Hubble distance is simply the distance that light can travel in the Hubble
time. Because the speed of light is 1 lightyear per year, the value of the
Hubble distance is the same as Hubble time if expressed in the units of Gly.

The Hubble distance, also called the Hubble radius (rz), is a characteristic
scale for the universe. Like in the case of the age of the universe, the radius
of the observable universe is not equal to the Hubble radius.

For the Einstein-de Sitter model, it is again two-thirds of the Hubble radius,
based on light travel time. Based on co-moving coordinates, the radius of
the observable universe is about 40 Gly, assuming Hy ~ 0.05 Gy~! (or 50
km/s per Mpc) for now.

13.6 Look-back time

When we observe a distant celestial object, the radiation that reaches us
traveled along the surface of the “cosmic teardrop”. The space distance
that the radiation traveled is however not the distance as measured along
the surface of the teardrop, because that distance includes a component of
time.

The space distance that the light traveled is called the look-back distance,
which is the same as the look-back time, in appropriate units, of course.

Copyright 2006: Einstein's-theory-of relativity-4engineers.com



RELATIVITY 4 ENGINEERS

CHAPTER 13. THE EINSTEIN-DE SITTER UNIVERSE 180

The look-back time is ty — t, where ty is the present time and ¢ the time
when the radiation left the object.

For the standard Einstein-de Sitter universe, we have seen that a = (t/to)%,
ort = toa%, so that
to —t = to(1 — a').

Since a = ﬁ (eq. 13.6) and ty = 3—-215 (eq. 13.3), we can express the
look-back time ¢ty — ¢ in terms of the redshift z as
2 1
ty—t=—= 1—1~5> 13.7
o—t=gm (1= (2)) | (13.7)

perhaps one of the most used equations in ‘standard’ cosmology—at least
in the pre-1980 era. It gives the (light travel) distance to a remote cosmic
object in terms of two measurable quantities, the redshift and the Hubble
constant.

Let us use equation 13.7 to calculate the look-back time to a galaxy at
redshift z = 6, taking Hy = .05 Gly~!.

2 1
fo—t=—" 1——3/2>%12. ly.
0 3><0.05( Z) 6 Gly

13.7 Cosmic microwave background radiation

If the universe started out in an almost infinitely dense state (the ‘big bang’),
the temperature must have been extreme. As determined by modern theory,
the temperature must have been in the order of 10'° degrees Kelvin, e.g.,
[Smoot], by the time the normal particles that makes up matter emerged.

However, during the first 400,000 years or so, radiation was so strongly
coupled to the elementary particles, that the universe was not transparent.
In effect, the photons were scattered by the charged elementary particles.
The universe was opaque.

When the temperature dropped enough so that electrons could bind with
nuclei, neutral atoms were formed, allowing radiation to become free to
move through space. The universe became transparent. It is called the time
of ‘last scattering’, with a temperature of around 3,000 degrees Kelvin.

Today, astronomers observe this radiation as the cosmic microwave back-
ground (CMB), at about 2.7 degrees Kelvin (equivalent black body tem-
perature). For a detailed account of how the CMB was accurately charted,
refer to [Smoot].

So how much has the universe expanded since last scattering? The re-
lationship between temperature and the expansion factor happens to be
linear, so that the expansion factor must have increased by about a factor
3,000/2.7 ~ 1, 100.

This gives an expansion factor at last scattering of a;; ~ 9.1 x 1074 and a
redshift of z;; = (1 —a)/a ~ 1,100. Astronomers and cosmologists usually
round this to a5 ~ 1072 and 25 ~ 1, 000.
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An interesting question: why can we continously observe the CMB, or in
other words, why have those photons from the last scattering not whisked
past us, never to be seen again? The answer is that there are apparently
much more universe than what we can observe today.

The big-bang happened everywhere simultaneously. As time goes on, we
observe further and further regions of space as they were at last scattering.
If the universe is infinite in size, the CMB will never become unobservable,
but it will be observed at lower and lower temperatures (larger redshift) as
time goes on.

If the universe happens to be finite but not closed on itself (i.e. it is larger
than today's observable universe, but it has boundaries or an edge), then
there may come a time when there will be no CMB as we know it today—
when the last CMB photons have whisked past us, never to be seen by us
again.

13.8 Summary

We now have a feeling for the Einstein-de Sitter model in terms of the
expansion law and Hubble's constant. We have seen how the redshift relates
to the expansion factor, the age of the universe, look-back time and the
CMB.

All was done in terms of the standard ‘flat’ model. It is now time to look at
various other expansion models. As we have seen previously, the simple flat
model takes as an assumption that the kinetic energy of expansion exactly
balances out the potential energy caused by the mutual gravitational pull
of the matter of the universe. What if they do not balance out?
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